Vibrational spectrum of the H₂S molecule

O.V. Naumenko and E.R. Polovtseva

Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk

Received September 13, 2004

Parameters of the effective vibrational Hamiltonian of the H_2S molecule are derived using an extended experimental data set. The Darling–Dennison and weak Fermi-type resonance interactions were taken into account in the effective Hamiltonian. As a result of fitting to 52 experimental band origins, 25 vibrational constants were derived, which reproduce the initial data accurate to 0.03 cm⁻¹.

Introduction

Experimental and theoretical investigations of rotational-vibrational (RV) spectra of hydrogen sulfide attract continuous interest due to the fact that the H₂S molecule is close to the local-mode limit, which is characterized by a high degree of localization of stretching vibrations. Therefore, the RV spectrum of H₂S has an unusual character at high excitation of stretching vibrations. In particular, the rotational structure of the spectrum of a local-mode pair becomes similar to the structure of the spectrum of a C_s-type molecule, and the energy levels form four-fold clusters.^{1,2}

The reliable calculation of the vibrational spectrum allows us to follow the evolution of the local-mode effects in H_2S upon the increase of the excitation energy. It is also needed for assignment of experimental absorption spectra of hydrogen sulfide. The vibrational spectrum of the H_2S molecule has been simulated using various approaches in many papers, which are reviewed in Ref. 3.

In Refs. 3 and 4, the vibrational spectrum of H_2S was calculated based on the effective Hamiltonian proposed in Ref. 5. The parameters of the Hamiltonian were retrieved using all available experimental information. Meanwhile, new experimental data on centers of high-excited RV bands of H_2S were reported recently,^{6–9} which are presented in Table 1. As can be seen from Table 1, the error of prediction of new centers of H_2S RV bands from the data of Refs. 1, 10, and 11 achieves several reciprocal centimeters. Our previous calculation,³ based on the use of the most complete set of initial experimental

data, proved to be much better in prediction then the cited papers, but, as can be seen from Table 1, it also needs in correction.

Results and discussion

For simulation of the H_2S vibrational spectrum, we used, as before, the effective vibrational Hamiltonian⁵:

 $H = \sum_{i,j} H_{ij} |i\rangle \langle j|,$

where

$$\begin{split} H_{ii} &= \sum_{\lambda} \omega_{\lambda} \Big(v_{\lambda}^{i} + \frac{1}{2} \Big) + \sum_{\lambda,\mu \geq \lambda} x_{\lambda\mu} \Big(v_{\lambda}^{i} + \frac{1}{2} \Big) \Big(v_{\mu}^{i} + \frac{1}{2} \Big) + \\ &+ \sum_{\lambda,\mu \geq \lambda,\nu \geq \mu} y_{\lambda\mu\nu} \Big(v_{\lambda}^{i} + \frac{1}{2} \Big) \Big(v_{\mu}^{i} + \frac{1}{2} \Big) \Big(v_{\nu}^{i} + \frac{1}{2} \Big) \Big(v_{\nu}^{i} + \frac{1}{2} \Big) + \\ &+ \sum_{\lambda,\mu \geq \lambda,\nu \geq \mu,\eta \geq \nu} z_{\lambda\mu\nu\eta} \Big(v_{\lambda}^{i} + \frac{1}{2} \Big) \Big(v_{\mu}^{i} + \frac{1}{2} \Big) \Big(v_{\nu}^{i} + \frac{1}{2} \Big) \Big(v_{\eta}^{i} + \frac{1}{2} \Big) + \dots , \\ H_{ij} &= \Big\{ \Gamma_{DD} + \gamma_2 \Big(v_2 + \frac{1}{2} \Big) \Big\} \times \\ &\times \Big\{ \Big(v_1 + \frac{1}{2} \pm \frac{1}{2} \Big) \Big(v_1 + \frac{1}{2} \pm \frac{3}{2} \Big) \Big(v_3 + \frac{1}{2} \mp \frac{3}{2} \Big) \Big(v_3 + \frac{1}{2} \mp \frac{1}{2} \Big) \Big\}^{1/2} , \\ &\quad |i\rangle = |v_1 v_2 v_3 \rangle, \quad |j\rangle = |v_1 \pm 2 \ v_2 \ v_3 \mp 2 \rangle, \\ H_{ij} &= F \Big\{ \Big(v_1 + \frac{1}{2} \pm \frac{1}{2} \Big) \Big(v_2 + \frac{1}{2} \mp \frac{1}{2} \Big) \Big(v_2 + \frac{1}{2} \mp \frac{3}{2} \Big) \Big\}^{1/2} , \\ &\quad |i\rangle = |v_1 v_2 v_3 \rangle, \quad |j\rangle = |v_1 \pm 1 \ v_2 \mp 2 \ v_3 \rangle. \end{split}$$

Table 1. Accuracy of prediction of vibrational energy levels of $H_2^{32}S$ molecule by different methods

$v_1 v_2 v_3$	$E_{ m exp},~ m cm^{-1}$	$\Delta E^{*}, \mathrm{~cm}^{-1}$								
		this work	Ref. 3	Ref. 10	Ref. 1	Ref. 11				
012	6385.299	0.008	0.122	-1.199	0.591	0.601				
220	7419.916	-0.027	-0.083	-3.316	0.114	0.284				
131	8539.561	-0.015	-0.133	-4.961	-0.631	-5.561				
230	8539.925	0.016	-0.253	-5.361	0.005	-5.725				
141	9647.167	0.012	-0.353	-7.267	-2.107	-16.567				
221	9806.667	-0.004	-0.206	-2.267	-1.297	3.933				
122	9806.733	0.05	-0.159	-2.333	-1.233	3.867				

* $\Delta E = E_{exp} - E_{calc}$

The set of parameters of the effective Hamiltonian obtained in Ref. 3 was taken as the initial The fitting approximation. incorporated 52 experimental vibrational energy levels, including seven new levels presented in Table 1. It should be noted that the vibrational energies of the states (012) and (230): 6385.299 and 8539.925 cm⁻¹, respectively, are not derived directly from the experiment, because the corresponding transitions $0_{00}-1_{11}$ were absent in the spectrum, but retrieved from fitting to the available experimental levels. These vibrational energies are determined accurate to 0.02 cm^{-1} .

To reconstruct the initial data with high accuracy (0.03 cm^{-1}) , three additional (with respect to the set from Ref. 3) parameters were varied: Y_{112} , Y_{223} , and Z_{1222} , which are responsible for the anharmonic effects connected with excitation of the bending vibration. The complete set of the parameters of the vibrational Hamiltonian is given in Table 2.

The experimental and calculated energy levels are presented in Table 3 along with their vibrational assignment by the method of normal and local modes. The 5th and 11th columns of Table 3 give the references to the papers, the experimental data are taken from. The experimental energy levels marked by asterisk correspond to the "dark" states and were not included in fitting. The deviation from the calculation for such levels achieves 3.3 cm^{-1} , and, in our opinion, the calculation is more accurate than the experimental vibrational energy, which is estimated roughly from individual RV energy levels or from the resonance interaction of the corresponding "dark" state with a "light" state.

The absorption spectrum of the hydrogen sulfide molecule in the range $8500-8900 \text{ cm}^{-1}$ was analyzed in Ref. 12. The fitting to the observed RV energy levels yielded the spectroscopic parameters of six vibrational states, four of which were "dark." At the same time, in Ref. 12 no one experimental energy level for the "dark" states was determined. The initial values of the vibrational energies of the "dark" states were taken from Ref. 1. These values remained fixed for the states (310) and (013) (8877.73 and

Table 2. Parameters of the effective vibrational Hamiltonian of the H2³²S molecule, cm⁻¹

Parameter	Value	Parameter	Value	Parameter	Value
ω_1	2719.936(240)	$y_{111} \cdot 10$	-1.539(420)	$z_{1111} \cdot 100$	2.921(370)
ω_2	1212.9385(710)	$y_{112} \cdot 10$	2.958(610)	$z_{1112} \cdot 100$	-8.02(100)
ω ₃	2735.8186(810)	$y_{113} \cdot 10$	4.113(210)	$z_{1133} \cdot 10$	-1.2659(500)
		y_{123}	-1.0681(140)	$z_{1222} \cdot 1000$	-5.30(150)
<i>x</i> ₁₁	-24.232(160)	$y_{133} \cdot 10$	8.373(400)	$z_{1333} \cdot 10$	-1.0892(560)
x_{12}	-17.591(110)	$y_{222} \cdot 100$	-6.124(260)	$z_{2333} \cdot 100$	-6.622(210)
x_{13}	-96.725(120)	$y_{223} \cdot 100$	8.57(110)		
x_{22}	-5.3411(240)	U		Γ_{DD}	-23.39195(320)
x_{23}	-21.1302(470)			$F \cdot 10$	5.670(320)
<i>x</i> ₃₃	-24.4079(190)			$\gamma_2\cdot10$	-2.5634(300)

N ot e . 68% confidence intervals in the units of the last significant digit are given in parenthesis.

Table 3. Experimental and calculated vibrational energy levels of the $H_2^{32}S$ molecule, cm⁻¹

Normal modes $v_1 v_2 v_3$	Local modes $mn \pm , v$	$E_{ m calc},\ { m cm}^{-1}$	$E_{ m exp},\ { m cm}^{-1}$	Ref.	$\begin{array}{c} Exp\\calc.,\\cm^{-1}\cdot 10^{-3}\end{array}$	Normal modes $v_1 v_2 v_3$	Local modes $mn \pm , v$	${E_{ m calc}, \over m cm^{-1}}$	$E_{ m exp},\ { m cm}^{-1}$	Ref.	$\begin{array}{c} Exp\\ calc.,\\ cm^{-1}\cdot 10^{-3} \end{array}$
1	2	3	4	5	6	7	8	9	10	11	12
010	00+, 1	1182.562	1182.5770	14	14	031	10–,3	6077.594	6077.5954	4	2
020	00+, 2	2353.951	2353.9644	4	14	210	20+,1	6288.178	6288.1462	4	-32
100	10+,0	2614.401	2614.4080	4	7	1 1 1	20-,1	6289.184	6289.1735	4	-10
001	10-,0	2628.421	2628.4551	4	34	012	11+, 1	6385.291	6385.2990	7	8
030	00+,3	3513.783	3513.7900	4	7	060	00+,6	6920.104			
1 1 0	10+, 1	3779.158	3779.1665	4	8	041	10-,4	7204.290			
0 1 1	10–,1	3789.276	3789.2688	4	-7	140	10+,4	7204.435			
$0\ 4\ 0$	00+,4	4661.674	4661.6770	4	3	220	20+,2	7419.943	7419.9160	8	-27
120	10+, 2	4932.692	4932.6992	4	7	121	20-,2	7420.111	7420.0923	4	-19
021	10–,2	4939.127	4939.1044	4	-23	022	11+,2	7516.795			
200	20+,0	5144.979	5144.9862	4	7	102	30+,0	7576.432	7576.3816	4	-50
101	20-,0	5147.201	5147.2205	4	19	201	30-,0	7576.529	7576.5450	4	16
0 0 2	11+,0	5243.117	5243.1014	4	-16	300	21+,0	7752.211	7752.2644	4	53
050	00+,5	5797.243	5797.2350	4	-8	003	21-,0	7779.298	7779.3195	4	22
130	10+,3	6074.589	6074.5823	4	-7	070	00+,7	8029.877			

1	2	3	4	5	6	7	8	9	10	11	12
051	10–,5	8318.834				312	50+, 1	13222.741		18	26
150	10+,5	8321.811				034	31+,3	13458.347			
131	20-,3	8539.576	8539.5610	9	-15	331	31–,3	13461.653			
230	20+,3	8539.909	8539.9250	9	16	430	22+,3	13556.618			
032	11+,3	8637.167	8637.1740	9	7	114	41+, 1	13601.362			
1 1 2	30+, 1	8697.147	8697.1420	4	-5	411	41-,1	13601.979			
2 1 1	30–,1	8697.170	8697.1550	4	-15	510	32+, 1	13781.983			
310	21+,1	8878.383				015	32-,1	13802.386			
013	21-,1	8896.894				322	50+, 2	14284.724	14284.7050	19	-19
061	10-,6	9420.842				223	50-,2	14284.728	14284.7050	19	-23
160	10+,6	9426.309				303	60-,0	14291.157	14291.1220	19	-35
141	20-,4	9647.155	9647.1670	6	12	402	60+,0	14291.161	14291.1220	19	-39
042	20+,4	9647.723				124	41+,2	14666.948			
240	11+,4	9745.927				421	41-,2	14667.503			
2 2 1	30-,2	9806.671	9806.6670	6	-4	105	51-,0	14761.726			
122	30+,2	9806.683	9806.7330	6	50	204	51+,0	14761.815			
301	40-,0	9911.033	9911.0230	4	-10	520	32+,2	14855.009			
202	40+.0	9911.062	9911.0230	4	-39	025	322	14862.216			
320	21+,2	9993.536				600	42+,0	15041.462			
023	21-,2	10003.864				501	42-,0	15044.735			
$0 \ 0 \ 4$	31+,0	10188.329	10188.3010	4	-28	006	33+,0	15144.776			
103	31-,0	10194.455	10194.4480	4	-7	332	50+,3	15334.423			
400	22+,0	10292.272				233	50-,3	15334.431			
151	20-,5	10742.441				313	60-,1	15339.782			
052	20+,5	10743.032				4 1 2	60+, 1	15339.784			
250	11+,5	10842.595				134	41+,3	15721.005			
231	30-,3	10904.618	10905.790*	15		431	41-,3	15721.308			
132	30+,3	10904.640	10905.790*	15		115	51-,1	15812.776			
311	40-,1	11008.661	11008.6840	15	23	214	51+, 1	15812.886			
2 1 2	40+, 1	11008.689	11008.6840	15	-5	035	32-,3	15911.614			
330	21+,3	11097.163	11097.1610	15	-2	530	32+,3	15916.667			
033	21-,3	11099.793	11102.215*	15		610	42+, 1	16095.653			
014	31+,1	11290.469				511	42-,1	16098.937			
113	31-,1	11294.451				016	33+,1	16194.038			
4 1 0	22+,1	11390.260				403	70-,0	16334.153	16334.1620	3	9
2 4 1	304	11990.601				304	70+.0	16334.157	16334.1620	3	5
142	30+.4	11990.629				323	60+, 2	16378.263			
321	402	12095.186				422	60-,2	16378.263			
222	40+.2	12095.213				125	512	16852.727			
203	500	12149.439	12149.4580	16	19	224	51+.2	16852.863			
302	50+.0	12149.442	12149.4580	16	16	205	610	16901.492			
043	214	12184.263				106	61+.0	16901.520			
340	21+.4	12188 777				026	42+.2	17136 605			
024	31+.2	12380 598				520	42 - 2	17142 754			
123	31-2	12383 672				620	33+2	17235 363			
420	22+.2	12478 561	12481 847*	17		502	52+.0	17278 965			
104	41+0	12524 616	12524 6280	17	12	601	52-0	17280 152			
401	41-0	12525 192	12525 2020	17	10	314	70+1	17354 152			
500	32+0	12698 191	12020.2020	.,	10	413	70-1	17354 152			
005	32-0	12732 567				700	43+0	17457 191			
1 3 3	32−,0 40– 3	13170 187	13169 668*	18		007	43_ 0	17/83 180			
222	40-,3	13170.107	13169 668*	18		116	40-,0 61 1	17925 220			
232	40+,3 50-1	13220.212	13222 7670	18	34	215	61 + 1	17925.230			
213	50-,1	10444.700	10222.1010	10	54	2 I J	011,1	11525.230			

N ot e. Experimental energy levels obtained from the analysis of "dark" states and not included in fitting are marked by asterisk.

8898.66 cm⁻¹, respectively), and for the states (032) and (230) they were refined from the fitting and found to be 8629.940 and 8535.03 cm⁻¹, respectively. However, new estimates of the (032) and (230) vibrational energies from Ref. 12 deviate by up to 7 cm⁻¹ from the values obtained in Refs. 1, 9 and in

this work, while the last three calculations are in a good agreement with each other, which suggests that the data of Ref. 12 are determined with serious errors, which are caused, certainly, by the absence of the experimental data for the high-excited (032) and (230) RV states in Ref. 12.

Conclusions

The parameters of the effective vibrational Hamiltonian obtained in this work allow the reconstruction of all available experimental data on the vibrational energy levels of the hydrogen sulfide molecule with a high accuracy of 0.03 cm^{-1} . The set of the experimental data used in this work is the most complete and accurate and can be recommended as initial information for simulation of the H₂S vibrational spectrum by other theoretical methods. The parameters obtained have been used to calculate the vibrational spectrum of the H₂S molecule in a wide spectral region. The analysis has shown that the accuracy of calculation of the vibrational spectrum of the hydrogen sulfide molecule based on the simple method of effective Hamiltonian is comparable with the accuracy achieved when using more general and cumbersome methods of retrieval of the potential energy surface.^{1,13}

Acknowledgments

This work was supported, in part, by the Russian Foundation for Basic Research (Grants No. 02–07–90139v and No. 02–03–32512) and INTAS (Grant No. 03–51–3394).

References

1. I.N. Kozin and P. Jensen, J. Mol. Spectrosc. 163, 482–509 (1994).

- 2. M.S. Child, O.V. Naumenko, M.A. Smirnov, and L.R. Brown, Mol. Phys. **92**, 885–893 (1997).
- 3. O. Naumenko and A. Campargue, J. Mol. Spectrosc. **210**, 224–232 (2001).

4. A. Bykov, O. Naumenko, M. Smirnov, L. Sinitsa, L.R. Brown, J. Crisp, and D. Crisp, Can. J. Phys. **72**, 989–1000 (1994).

5. A.D. Bykov, Yu.S. Makushkin, and O.N. Ulenikov, J. Mol. Spectrosc. **99**, 221–227 (1983).

6. Y. Ding, O. Naumenko, S.-M. Hu, Q. Zhu, E. Bertseva, and A. Campargue, J. Mol. Spectrosc. **217**, 222–238 (2003).

7. L.R. Brown, O.V. Naumenko, E.R. Polovtseva, and L.N. Sinitsa, Proc. SPIE **5311**, 59–67 (2003).

8. L.R. Brown, O.V. Naumenko, E.R. Polovtseva, and L.N. Sinitsa, Proc. SPIE **5396**, 42–48 (2003).

9. L.R. Brown, O.V. Naumenko, E.R. Polovtseva, and L.N. Sinitsa, Proc. SPIE **5743**, 1–7 (2004).

10. L. Halonen and T. Carrington, J. Chem. Phys. 88, 4171-4185 (1988).

11. Y. Zheng and S. Ding, J. Mol. Spectrosc. **201**, 109–115 (2000).

12. O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, S.V. Grebneva, W.-P. Deng, O.V. Gromova, and S.-M. Hu, J. Mol. Spectrosc. (2004) (in press).

13. VI.G. Tyuterev, S.A. Tashkun, and D. Schwenke, Chem. Phys. Lett. **348**, 223–234 (2001).

14. O.N. Ulenikov, A.B. Malikova, M. Koivussaari, S. Alanko, and R. Anttila, J. Mol. Spectrosc. **176**, 229–235 (1996).

15. O. Naumenko and A. Campargue, J. Mol. Spectrosc. **209**, 242–253 (2001).

16. J.-M. Flaud, R. Groβkloβ, S.B. Rai, R. Stuber, W. Demtroder, D.A. Tate, L.-G. Wang, and

Th.F. Gallagher, J. Mol. Spectrosc. **172**, 275–281 (1995). 17. O. Vaittinen, L. Biennier, A. Campargue, J.-M. Flaud,

and L. Halonen, J. Mol. Spectrosc. 184, 228-289 (1997).

18. A. Campargue and J.-M. Flaud, J. Mol. Spectrosc. **194**, 43–51 (1999).

19. J.-M. Flaud, O. Vaittinen, and A. Campargue, J. Mol. Spectrosc. **190**, 262–268 (1998).