High Resolution Fourier Transform Spectrum of HDO in the $7500-8200 \mathrm{~cm}^{-1}$ region: Revisited

O. V. Naumenko ${ }^{\sharp}$, S. Voronina ${ }^{\sharp}$, S.-M. $\mathrm{Hu}^{\dagger} *$
${ }^{\dagger}$ Laboratory of Bond Selective Chemistry, University of Science and Technology of China, Hefei, 230026, China. ${ }^{\sharp}$ Institute of Atmospheric Optics, SB, Russian
Academy of Science, Tomsk, Russia.

Abstract

The HDO absorption FT spectrum is recorded and analyzed in the $7500-8200 \mathrm{~cm}^{-1}$ spectral region. The high accuracy ab initio calculation of Schwenke and Partridge was successfully applied for spectrum assignment that resulted in derivation of 508 precise rovibrational energy levels for the (300), (031), (111), (060), (220) and (002) states, with 295 of them being reported for the first time. In particular, eight new energy levels, including the band center at $7914.3170 \mathrm{~cm}^{-1}$, were derived for the highly excited bending (060) state from transitions borrowing their intensities through local high-order resonance coupling with the (300) and (031) states.

Key words: vibration-rotation spectra, HDO molecule, water absorption

1 Introduction

Extensive calculations of the water vapor and its isotope species line positions and intensities performed by Schwenke and Partridge (SP)[1,2] initiated numerous theoretical and experimental investigations of the water vapor absorption spectra in different spectral regions. These calculations are very attractive for applications due to their high accuracy in terms of line position and intensity. At the same time the effective Hamiltonian (EH) approach traditionally used for the high-resolution spectra modeling often meets difficulties when applied to the highly excited interacting vibrational states of nonrigid molecules like water. The main problems in the EH method come from the divergence of

[^0]the perturbation series in the presentation of the rotational Hamiltonian, as well as strong and numerous inter-polyad resonance interactions leading to a necessity to use much more effective parameters. The lack of the experimental information for the highly vibrationally excited interacting states of the HDO molecule also represents a serious obstacle in the EH approach.

The above mentioned reasons prevented complete identification and modeling of the high resolution spectrum of HDO. For example, many weak lines were left unassigned in the Fourier transform spectrum recorded and analyzed in the $7600-8100 \mathrm{~cm}^{-1}$ spectral region in Ref. [3]. Meanwhile, the prediction power of the SP calculation is proved to be greatly helpful in the line-by-line analysis for HDO spectra in many regions[4-9]. In this paper, we present new theoretical and experimental study of the HDO Fourier transform absorption spectrum in the region $7500-8200 \mathrm{~cm}^{-1}$. This time in the identification process we rely mainly on the SP calculation, which seems to be also very accurate in the considered spectral region.

As will be seen from the forthcoming sections, application of the detailed and accurate theoretical linelist to more extensive and accurate experimental data recorded at a higher resolution and better signal-to-noise ratio, resulted in retrieval of large set of new experimental energy levels for the (300), (031), and (111) vibrational states of HDO compared to Ref. [3].

2 Experimental Details

The sample of $\mathrm{D}_{2}^{16} \mathrm{O}$ was purchased from PeKing Chemical Industry, Ltd. (China). The stated purity of deuterium was 99.8%. The sample of HDO was prepared by mixing the $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ with a ratio of $1: 1$. The spectra were recorded at room temperature (296 K) with the Bruker IFS 120HR Fouriertransform interferometer (Hefei, China), which is equipped with a path length adjustable multi-pass gas cell, a tungsten source, a CaF_{2} beam-splitter, and Ge diode detector. The unapodized resolution was $0.01 \mathrm{~cm}^{-1}$, and the apodization function was Boxcar. The sample pressure was 10 hpa which was measured by a manometer with a stated accuracy of 20 Pa . The total path length was 87 m . To improve the signal-noise-ratio, 2040 scans were accumulated.

Since in the region under study there are many absorption lines due to the $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$, the spectrum of "pure" $\mathrm{D}_{2} \mathrm{O}$ was also recorded to identify the absorption lines of HDO. The spectrum was calibrated with $\mathrm{H}_{2} \mathrm{O}$ lines in this region listed in the Hitran database. The precision in the positions of unblended lines was estimated better than $1 \times 10^{-3} \mathrm{~cm}^{-1}$. For illustration, a small piece of the recorded spectra is presented on Fig.1.

3 Spectrum Assignment and Energy Levels Derivation

For identification purpose approximate intensities were derived for each observed line from the peak absorption values. Synthetic HDO spectrum from Ref. $[1,2]$ was used as the input data for the expert system for automatic assignment of the rovibrational molecular spectra.

Since a large number of the observed energy levels were derived from a single line without ground state combination differences(GSCD), it is worth to give some details of the identification process here. Obviously, the reliable identification of single lines entirely depends on the accuracy of the simulated spectrum used in the assignment process. To the best of our knowledge, the SP prediction of the line positions and intensities of water vapor and its isotope species is one of the most accurate among recent $a b$ initio and variational calculations, at least for wavenumbers lower than $16000 \mathrm{~cm}^{-1}$. Although the accuracy of the SP calculation of line positions varies significantly depending on the spectral region and the isotope species considered (see, for example, [10]), these variations behave regularly with the V_{1}, V_{2}, V_{3} vibrational, and the J, K_{a} rotational quantum numbers. This gives the opportunity to introduce the correcting factor for SP prediction for each vibrational band.

Another important point in the weak line identification process is the matching between the observed and calculated intensities. In case of intensity consideration, one should estimate an intensity threshold - I_{1} in calculated data that means that all calculated lines with $I \geq I_{1}$ should be observed in the spectrum or their absence can be explained by the overlapping with stronger lines in their vicinity. Another threshold - I_{2} can be introduced for the weakest lines, so all calculated lines with intensity $I_{2} \leq I<I_{1}$ either can be found or be absent in the spectrum, and all calculated lines with intensity $I<I_{2}$ can be neglected. Obviously, that I_{2} should be close to the noise level of the spectrum. On the other hand, we should not find in the observed spectrum those lines, which can not be explained within the estimated accuracy of the synthetic spectrum. If these rules hold for simulated spectrum, one can rely on this calculation without running the risk of making wrong assignment.

The synthetic spectrum for considered spectral region was found to be of the high quality. In Table 1 an average and maximum deviation between the observed and calculated positions is presented for all considered vibrational states of HDO in this region. As shown in Table 1, the averaged deviations for most of the analyzed states do not exceed $0.07 \mathrm{~cm}^{-1}$, that is quite satisfactory for the unambiguous line identification since we found that the observed and calculated values of line intensities also match well. In our case the I_{2} and I_{1} values were estimated to be of $5.0 \mathrm{E}-07$ and $4.0 \mathrm{E}-06 \mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$ respectively. Comparison of the observed and calculated spectrum in the whole region is
shown on Fig. 2.

Finally 1254 absorption lines of HDO were rotationally assigned and they correspond to 1415 transitions going on 5 upper vibrational states (see Table $1)$. The resulting linelist, which includes observed HDO line positions and calculated [2] intensities followed by rovibrational assignment, is attached to this paper as Supplemented Material. The HDO lines blended by the $\mathrm{D}_{2} \mathrm{O}$ lines are specially marked. Some relatively strong HDO lines were not included into the linelist since they are unrecoverably blended by stronger lines of other isotope species.

Extensive set of 508 precise experimental energy levels of HDO was derived by adding the ground state experimental energy levels [11] to the observed transitions. This number should be compared with 135 energy levels obtained in Ref. [3] (see Table 1). The observed energy level values are presented in Tables 2-3 together with the experimental uncertainties and number of lines used for level determination. As a comparison, the experimental uncertainty indicated by the GSCD method is about $4 \times 10^{-4} \mathrm{~cm}^{-1}$ on average, which is significantly better than in our previous contribution [3]. For the (002) state earlier investigated in Ref. [12] only 22 new (compared to Ref. [12]) energy levels are shown of 102 observed.

As it was stressed in Ref. [3], the strong interaction between (031) and (111) vibrational states results in greatly mixed wave-functions and ambiguity in vibrational assignment of their rotational levels. We accepted here the rovibrational assignments proposed by SP, which may differ in some cases from those given in Ref. [3]. An interesting example of the high-order local rovibrational resonance represents the (300)-(060) interaction. This coupling affects the $K_{a}=0$ energy levels of both states and induces reasonable intensity transfer to the otherwise extremely weak transitions of the $6 \nu_{2}$ band. As J and K_{a} increase, the (031)-(060) coupling also becomes important. In addition to Ref. [3] data we could derive eight energy levels of the highly excited (060) state (see Table 3) with $K_{a}=0,1$ and 2 including the band center at 7914.3170 cm^{-1}.

At the final stage of the spectrum analysis we could partly assign transitions of the very weak (220)-(000) band. Eighteen energy levels were derived for the (220) vibrational state, which seemed to be strongly perturbed by resonance coupling with other states. In particular, the high K_{a} energy levels of the (300) state (not observed in Ref. [3]) are strongly coupled to the corresponding levels of the (220). The (002) energy levels have the largest average and maximum deviations from the SP prediction (see Table 1). However, these deviations vary very slowly and regularly with J and K_{a} that allowed us to perform reliable assignments which were also confirmed by the EH calculations [13].

4 Conclusion

Usage of the high accuracy Schwenke and Partridge [1,2] calculation for the theoretical treatment of the Fourier transform absorption spectrum of HDO molecule in the $7500-8200 \mathrm{~cm}^{-1}$ spectral region provided complete assignment of the experimental data and derivation of the extensive set of new precise energy levels for the (300), (031), (111) states. Some additional energy levels were also obtained for the highly excited (060) and (220) states. This new HDO energy level set represents enlargement of the existing data and can be used in further refinement of the water vapor potential function, while detailed HDO absorption linelist in the $7500-8200 \mathrm{~cm}^{-1}$ spectral region supplements the information contained in the spectroscopic databases like HITRAN compilation.

Acknowledgments

This work is jointly supported by the National Natural Science foundation of China (20103007, 50121202), and INTAS foundation (project 03-51-3394). O. N. acknowledges the financial support from the Russian Foundation for Basic Researches (grants N 02-03-32512 and N 02-07-90139).

References

[1] H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618-4639 (1997).
[2] D. W. Schwenke and H. Partridge, J. Chem. Phys. 113, 6592-6597 (2000).
[3] S.-M. Hu, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S.-G. He, X.-H. Wang, H. Lin, and Q.-S. Zhu, J. Mol. Spectrosc. 203, 228-234 (2000).
[4] O. Naumenko, and A. Campargue, J. Mol. Spectrosc. 199, 59-72 (2000).
[5] O. Naumenko, E. Bertseva, A. Campargue, and D. Schwenke, J. Mol. Spectrosc. 201, 297-309 (2000).
[6] E. Bertseva, O. Naumenko, and A. Campargue, J. Mol. Spectrosc. 203, 28-36 (2000).
[7] A. Campargue, E. Bertseva, and O. Naumenko, J. Mol. Spectrosc. 204, 94-105 (2000).
[8] E. Bertseva, O. Naumenko, and A. Campargue, J. Mol. Spectrosc. 221, 38-46 (2003).
[9] O. Naumenko, S.-M. Hu, S.-G. He, and A. Campargue, Phys. Chem. Chem. Phys., 6, 910-918 (2004).
[10] B. Voronin, Russian Physics Journal 43, 96-100 (1999).
[11] R. Toth, J. Mol. Spectrosc. 162, 20-40 (1993).
[12] R. Toth, J. Mol. Spectrosc. 186, 66-89 (1997).
[13] A. Bykov, O. Naumenko, T. Petrova, A. Scherbakov, and L. Sinitsa, Atmos. and Oceanic Opt. 11, 1281-1289 (1998).

Fig. 1. Part of the spectrum of HDO. Upper panel: observed spectrum; Lower panel: stick spectrum from $a b$ initio calculation by Schwenke and Partridge[1,2]. Transitions of HDO are assigned while $\mathrm{D}_{2} \mathrm{O}$ lines are indicated with "D". Note that some strong lines are beyond the display range.

Fig. 2. Overview of the HDO spectrum between 7500 and $8200 \mathrm{~cm}^{-1}$. (a) Stick spectrum retrieved from the FTS spectrum recorded with a 87 m absorption path length at a total pressure of water of $10 \mathrm{hPa}(\mathrm{D}: \mathrm{H} \approx 1: 1)$. (b) Stick spectrum from $a b$ initio calculation by Schwenke and Partridge[1,2].

Table 1
Deviations between the observed and calculated (SP, Ref. [1,2]) energy levels for the HDO vibrational states in the considered region.

V_{1}	V_{2}	V_{3}	Band center, cm^{-1}		Number of Observed Levels		$E_{o b s}-E_{\text {calc }}, \mathrm{cm}^{-1}$	
			$E_{\text {obs }}$	$E_{\text {calc }}$	This work	Ref.[3]	Average	Maximum
0	0	2	7250.5192	7250.640	102		0.14	-0.22
0	3	1	7754.6055	7754.630	111	11	0.00	± 0.03
1	1	1	7808.7586	7808.730	103	37	0.01	+0.04
0	6	0	7914.3170	7914.365	10	2	0.03	-0.06
3	0	0	7918.1719	7918.135	164	83	0.06	-0.18
2	2	0		8090.034	18		0.07	+0.10

Table 2
Rotational energy levels (in cm-1) of the (300), (031), and (111) vibrational states of HDO

$J^{\prime} K_{a} K_{c}$	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \\ (300) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{\text {obs }} \\ \mathrm{cm}^{-1} \\ (031) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{\text {obs }} \\ \mathrm{cm}^{-1} \\ (111) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N
000	7918.1719		1	7754.6055		1	7808.7586		1
101	7932.8872	0.1	2	7770.0448	0.6	2	7824.1053	2.6	2
111	7946.6145	0.7	2	7789.2029	0.2	2	7840.9318	0.1	2
110	7949.0716	0.1	2	7792.4604	0.3	2	7843.9931	0.4	2
202	7962.2634	0.3	3	7800.5240	0.2	3	7854.4164	0.2	2
212	7973.4633	0.6	3	7816.7599	0.1	3	7868.5855	0.2	3
211	7980.8263	0.3	4	7826.5117	0.6	2	7877.7446	0.1	2
221	8022.6185	0.2	2	7929.4767	0.1	2	7880.7671	0.1	4
220	8022.9129	0.2	4	7929.8454	0.1	2	7881.1278	0.5	3
303	8004.2474	0.1	3	7845.2879	1.2	3	7898.9523	0.8	2
313	8013.5499	0.1	4	7857.8590	0.1	2	7909.8405	0.1	3
312	8028.2391	0.1	4	7877.2686	1.1	2	7928.3441	0.2	3
322	8066.5185	0.1	5	7975.7249	0.1	3	7926.5378	0.2	4
321	8067.9604	0.4	5	7977.5292	0.4	2	7928.5832	0.4	6
331	8142.0179	0.1	2	8073.9264	2.5	2	8017.0379	0.1	3
330	8142.0393	0.2	2	8074.0623	1.1	3	8017.0678	0.3	2
404	8060.2222	0.2	3	7903.3697	0.3	3	7956.8161	0.2	3
414	8066.6864	0.3	3	7912.2573	0.1	2	7964.4609	0.3	2
413	8091.0188	0.1	3	7944.3139	0.1	2	7994.9607	0.1	2
423	8124.7992	0.2	4	8037.0823	0.1	3	7987.5453	0.4	3
422	8128.9428	0.3	9	8042.2400	0.1	2	7993.0072	0.2	2
432	8200.9727	0.1	4	8136.5558	0.4	2	8078.5373	0.3	3
431	8201.1254	0.1	3	8136.4740	0.1	2	8078.7557	0.3	3
441	8305.1165	0.2	2	8275.8404	0.2	3	8194.5927	0.4	3
440	8305.1156	0.7	2	8275.8384	0.3	2	8194.5919	0.6	2
505	8128.5183	0.1	3	7973.9086	0.9	3	8027.2378	0.1	2
515	8132.6631	0.2	3	7979.6895	0.3	2	8032.1865	0.1	2
514	8168.7285	0.1	3	8027.0248	0.1	2	8077.4149	0.2	2
524	8197.2465	0.2	3	8113.2939	0.3	2	8063.1567	0.4	4
523	8206.2607	0.1	6	8124.3820	0.1	3	8074.8498	0.6	4
533	8274.7739	0.2	6	8214.9765	0.4	2	8155.5026	1.6	2
532	8275.3689	0.4	5	8215.4116	0.2	2	8156.3555	0.6	2
542	8378.6132	0.4	3	8354.2027	1.0	3	8271.0682	1.1	2
541	8378.6254	0.1	3	8354.2614	0.2	2	8271.0753	0.7	3
551	8510.9579	0.4	2	8530.6453	0.2	2	8413.6540	0.6	2
550	8510.9563	0.2	2	8530.6468	1.2	2	8413.6530	0.3	2
606	8208.7655	0.2	4	8056.3869	0.1	2	8109.7735	0.3	3
616	8211.2727	0.1	4	8059.8977	0.1	2	8112.7750	0.1	2
615	8260.7653	0.3	3	8124.5504	0.6	3	8174.9171	0.1	2
625	8283.6025	0.2	3	8204.0516	0.4	3	8153.0928	0.1	2
624	8299.9813	0.2	4	8222.9915		1	8174.1073	1.6	4
634	8363.6432	0.1	3	8309.1418	0.2	3	8247.7629	0.6	3
633	8365.1502	0.1	4	8310.8843	0.2	2	8250.3224	1.0	4
643	8466.9589	0.2	4	8448.3924	0.3	3	8362.9616	0.1	2
642	8467.0205	0.4	2	8448.7355	0.2	2	8362.8178	0.2	2
652	8598.8148	0.1	2	8624.4269	1.1	2	8505.0336	0.2	2
651	8598.8142	0.7	2	8624.4263	1.7	2	8505.0341	0.7	2
661	8759.0094	0.1	3	8833.1236		1	8674.2375		1
660	8759.0094	0.1	3	8833.1236		1	8674.2375		1
707	8300.9173	0.1	5	8150.6417	0.2	2	8204.2820	0.2	2
717	8302.3484	0.3	3	8152.6679	0.5	2	8206.0152	0.1	2
716	8366.3833	0.4	5	8286.5722	1.3	2	8235.8491		1
726	8383.5814	0.1	4	8309.0149	0.1	2	8256.9764	0.2	2
725	8409.8214	0.1	4	8342.9073		1	8290.3012	2.5	2
735	8466.5714	0.1	2	8418.9312		1	8355.8086	0.1	4
734	8471.1290	0.4	5	8423.4728	0.6	2	8361.2035	0.5	2

$J K_{a} K_{c}$	$\begin{gathered} E_{\text {obs }} \\ \mathrm{cm}^{-1} \\ (300) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \\ (031) \\ \hline \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{\text {obs }} \\ \mathrm{cm}^{-1} \\ (111) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N
744	8570.2377	0.1	3	8558.3956	0.1	2	8470.1379	0.2	2
743	8570.4518	0.2	4	8560.2253	2.4	3	8470.8922	0.2	3
753	8701.4024	0.8	2				8611.7671		1
752	8701.4052	0.7	2	8733.9465		1	8611.7782	0.5	2
762	8861.0423	0.2	2	8942.2256	3.0	2	8780.3866	0.3	2
761	8861.0426	0.1	2	8942.2256	3.0	2	8780.3860	0.2	2
771	9047.9232	0.2	2				8975.4544	1.2	2
770	9047.9232	0.2	2				8975.4544	1.2	2
808	8404.9487	0.1	2	8256.7045	0.2	2	8310.7838	0.2	2
818	8405.7394	0.1	2	8257.8295		1	8311.7476	1.0	2
817	8484.6326	0.2	2	8411.4595	0.8	2	8359.8175	0.2	3
827	8496.8835	0.2	3	8427.8272	0.6	2	8374.4107	0.3	3
826	8535.2616	0.2	3	8476.6489		1	8422.4980	0.1	2
836	8584.4192	0.2	3	8544.1189	0.6	2	8479.1498	1.6	2
835	8592.5515	0.3	4	8553.7271	0.1	2	8489.6431	1.4	2
845	8688.7211	0.2	3	8683.9150	0.1	2	8593.8321	0.1	3
844	8689.2931	0.2	3	8683.9889	0.1	2	8594.5139	0.2	2
854	8818.7628	0.6	3	8859.1147		1	8733.9143		1
853	8818.7818	0.4	2	8859.1941		1	8733.9481		1
863	8977.7104	1.8	2	9066.9427		1	8901.7761	2.7	3
862	8977.7069	1.6	2	9066.9427		1	8901.7787	0.6	2
872	9163.9544		1				9096.2111		1
871	9163.9544		1				9096.2111		1
881	9376.6430		1						
880	9376.6430		1						
909	8520.9219	0.9	2	8374.6501		1	8429.3253	0.2	3
919	8521.3455	0.1	2	8375.2576	0.5	2	8429.8443	0.1	3
918	8615.0643	0.3	2	8548.8015	0.5	2	8495.5755		1
928	8623.1552	0.4	2	8560.1306	2.1	2	8505.0147	1.9	2
927	8675.6248	0.1	3	8627.7840	1.3	2	8571.4422	1.8	2
937	8716.5584	0.2	2	8684.3500	0.1	2	8615.4950		1
936	8731.2516	0.4	2	8701.9607	8.4	2	8635.6543	2.1	2
946	8820.5873	0.8	2				8732.4949	1.0	2
945	8822.0998	0.1	3				8734.4312		1
955	8950.9577	1.0	2	9000.0916		1	8871.5066		1
954	8951.0087		1				8871.6331		1
964	9109.0289	3.1	2	9207.2868		1			
963	9109.0343	1.8	2	9207.2873		1			
973	9294.5122	0.3	2						
972	9294.5119	0.5	2						
982	9506.4541		1						
981	9506.4541		1						
991	9744.0518		1						
990	9744.0518		1						
10010	8648.8589	0.1	2	8504.5555		1	8559.9499	0.1	2
10110	8649.0817	0.3	4	8504.8664		1	8560.2212	0.1	2
1019	8757.1060	0.7	3	8698.1163	1.4	2	8642.7237		1
1029	8762.1923	1.3	2	8705.6028	0.1	2			
1028	8830.0581	0.9	2	8793.0070	0.6	2			
1038	8862.6989	0.1	2	8839.8877		1	8767.1630		1
1037	8887.4378	0.3	2	8867.9057	3.0	2	8799.0637		1
1047	8968.7028	1.0	2				8885.7178		1
1046	8972.1544	0.3	2	8987.4482		1	8891.0983	1.1	2
1056	9097.9584	0.5	2						
1055	9098.1687	0.5	2	9157.3095		1	9024.9251		1
1065	9255.0239		1	9363.2540		1			
1064	9255.0346		1	9363.2567		1			
1074	9439.6070		1						
1073	9439.6071		1						

${ }^{J} K_{a} K_{c}$	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \\ (300) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \\ (031) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \\ (111) \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N
11011	8788.7708	0.1	2	8646.4372		1			
11111	8788.8868	0.3	2	8646.6004		1	8702.8109	0.2	2
11110	8910.6516	0.2	2	8859.1970		1			
11210	8913.7058	0.4	2	8863.9556	1.8	2			
1129	8997.8507	0.8	2	8973.9347		1			
1139	9022.5648	0.1	2	9008.8965		1			
1138	9059.1873	0.6	2	9049.9359		1			
1148	9131.2681	0.2	2	9158.3159		1			
1147	9138.1446	0.4	2						
1157	9259.8456	0.8	2						
1156	9260.3898		1						
1166	9415.7669		1						
1165	9415.7772		1						
1175	9599.2361		1						
1174	9599.2363		1						
12012	8940.6520	0.4	2				8857.4994	0.1	2
12112	8940.7067	1.6	2				8857.5771		1
12111	9075.7355	0.3	3	9032.0095		1			
12211	9077.4934		1	9034.9726		1			
12210	9178.0456		1	9164.7969		1			
12310	9196.3503		1	9191.3435		1			
1239	9244.5555		1						
1249	9308.2763		1						
1248	9320.6861		1						
1258	9436.6126		1						
1257	9437.8584		1						
1276	9773.4386		1						
1275	9773.4396		1						
13013	9104.4639		1				9024.3994		1
13113	9104.5117		1				9024.4472		1
13112	9252.4347	4.3	2	9216.6782		1			
13212	9253.4422		1	9218.5109		1			
13211	9367.1298		1						
13311	9380.7672		1						
13310	9447.6649		1						
13410	9499.4768		1						
1349	9519.9991		1						
1359	9628.1676		1						
14014	9280.2049		1						
14114	9280.2253	3.6	2						
14113	9440.8411	0.8	2						
14213	9441.3939		1						
14212	9571.6776		1						
14311	9663.2365		1						
15015	9467.8220	1.1	2						
15115	9467.8293	3.2	2						
15214	9641.3298		1						
16016	9667.2765		1						
16116	9667.2817		1						

\bar{N} is the number of lines used for the upper energy level determination and σ denotes the corresponding experimental uncertainty in $10^{-3} \mathrm{~cm}^{-1}$.

Table 3
Rotational energy levels (in cm-1) of the (060), (002), and (220) vibrational states of HDO

${ }^{J} K_{a} K_{c}$	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	${ }^{\prime} K_{a} K_{c}$	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N	$J^{\prime} K_{a} K_{c}$	$\begin{gathered} E_{o b s} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{gathered} \sigma \times 10^{3} \\ \mathrm{~cm}^{-1} \end{gathered}$	N
	(060)			440	8558.7062		1	1285	9277.2901		1
000	7914.3170		1	505	8305.5911		1	1284	9277.2891		1
101	7929.8972		1	524	8404.7408		1	1294	9485.5166		1
202	7960.5925	0.3	3	523	8415.1744		1	1293	9485.5166		1
303	8007.4630	0.3	3	551	8800.9838		1	13211	8750.3185		1
404	8067.8172	0.8	2	550	8800.9838		1	1376	9290.6896		1
413	8141.4562		1	616	8392.7248		1	1386	9475.2787		1
505	8142.0631		1	615	8455.8198		1	1385	9475.2755		1
606	8230.5251	2.0	3	707	8480.4521		1	1395	9682.4269		1
717	8347.0643		1	717	8484.1664		1	1394	9682.4269		1
725	8556.1889	0.6	3	808	8585.4354		1	14410	9139.4178		1
				909	8702.1795		1	1459	9223.0272	0.5	2
220	8225.1342		1		(002)			15312	9298.8667		1
303	8178.9222		1	1083	8926.9617		1	15411	9383.7530		1
322	8270.0021		1	1082	8926.9644		1	15511	9441.3283		1
404	8236.0140		1	1184	9094.5143		1	15510	9463.5777		1
422	8335.0522		1	1183	9094.5141		1	15610	9577.6308		1
441	8558.7081		1	1257	8794.9786	0.3	2				

N is the number of lines used for the upper energy level determination and σ denotes the corresponding experimental uncertainty in $10^{-3} \mathrm{~cm}^{-1}$. For the (002) state only 22 new (compared to Ref. [12]) energy levels are shown of 102 observed.

[^0]: * E-Mail: smhu@ustc.edu.cn

