

Species Dictionary A Proposal

Proposal for Dictionary of Species

VAMDC must able to merge queries from multiple databases

Therefore must have a common language for species

Proposal to create master list of molecules, identified by a unique Molecule ID

Create a Molecule ID by:

- Choosing a human readable stoichiometric formula (arranged in ascending Atomic Number order) with charge
- Counter (_c) appended to identify specific variant (e.g. isomers, isotopologues, confomers)

$$\begin{array}{c} A_{n_a}B_{n_b}C_{n_c} \dots X_{n_x} [+/-]_{n_{+/-}} \\ \xrightarrow{} \text{ Increasing Atomic Number } \end{array}$$

- n value is omitted if the number of atoms (or charges) = 1
- The counter suffix currently has no particular meaning, thus represents no particular property of the Atom or molecule

Molecule ID + Stoichiometric Formula

 $A_{n_a}B_{n_b}C_{n_c}...X_{n_x}[+/-]_{n_{+/-}}C$ \rightarrow Increasing Atomic Number \rightarrow

- Could also store another stoichiometric formula (also ordered by ascending atomic number) that explicitly names the isotopes of the particular constituent atoms
- Isotopes (if specified) are preceded by the atomic mass in brackets, including (2)H for deuterium and (3)H for tritium

E.g.:

Water (H2O): Molecule ID = $H2O_1$, Stoichiometric Formula = H2O

Deuterated Water (HDO): Molecule ID = H2O_2, Stoichiometric Formula = (2) HHO

Aliases

• Related to each Molecule ID is one or more Aliases

- Aliases might include Structural Formulae, Other Names, etc
- Can be used to help identify the Molecule ID

E.g.:

Molecule ID = H4C2O2+_1 Stoichiometric Formula = H4C2O2+

Aliases:

COOCH4+ (structural formula) Acetic acid ion (other name) Methyl formate ion (other name) C2H4O2+ (other name)

Elements

 All the elements can be represented using this scheme, though note that each ion would be represented as a separate entity

E.g.:

Fe $1 = {}^{56}$ Fe

 $Fe_2 = {}^{55}Fe$ (isotope)

Fet $1 = {}^{56}\text{Fe}^+$

Fe+2 $1 = {}^{56}\text{Fe}^{2+}$

 $Fe+26_1 = {}^{56}Fe^{26+}$ (stripped iron atom)

etc...

UMIST Examples

• All 739 identifiable species converted into this format (using a Python script)

Example Queries (using MySQL)

<pre> molecule_id +</pre>	stoichiometric_formula	data_origin	data_origin_id +
HCN_1	HCN	UMIST	58
HCN_2	HCN	UMIST	61
HCN_3	(2)HCN	UMIST	73
HCN_4	H(13)CN	UMIST	458
HCN_5	H(13)CN	UMIST	459
HCN_6	HC(15)N	UMIST	468
HCN_7	(2)HCN	UMIST	489

Note: The first & fifth molecules in this list are actually HNC, not HCN

UMIST Examples

Query the Aliases list (for Hydrogen isocyanide, HNC)

<pre>+ molecule_id +</pre>	stoichiometric_formula	name	+ alias_type +
HCN_1	HCN	HNC	structural
HCN_1	HCN	Hydrogen isocyanide	other
HCN_5	H(13)CN	HN(13)C	structural
HCN_5	H(13)CN	Hydrogen isocyanide	other

Issues

- Representation of Stable Isotopes in Stoichiometric formulae: Do we need to always specify the isotope even for the most common? - e.g. ⁷⁹Br to ⁸¹Br (both stable isotopes) is roughly 50:50.
- The number after the underscore '_' has no physical or chemical meaning.
- The '+' sign cannot be used in an XSAMS URI.
- Completely different molecules are listed under the same parent stoichiometric formula. E.g. HCN and HNC.
- Some databases contain completely stripped nuclei e.g. Fe²⁶⁺. Will the number of "Molecule" IDs become unmanageable?
- Some databases contain 'unidentified' species. E.g. Charged and neutral "grains" in UMIST. How do we represent these?

Outlook

- Extend conversion scripts to add species from other databases CDMS, BASECOL, HITRAN, etc
- Deliver Species Tables to other database owners for VAMDC prototypes
- Investigate the possible alternative use of InChI numbers