#### **CHIANTI and VAMDC**

Giulio Del Zanna STFC Advanced Fellow Helen Mason Head of atomic astrophysics group

DAMTP, University of Cambridge UK

**OUTLINE**:

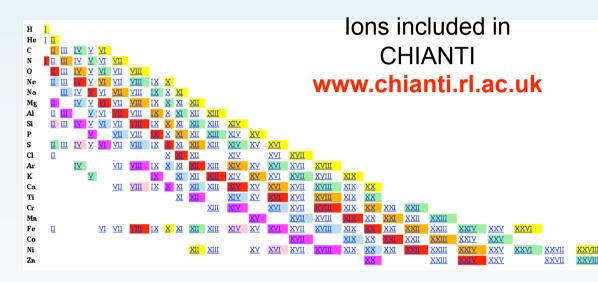
Atomic Data Calculations – e.g. APAP Network (UK):

**Atomic Databases: CHIANTI and VAMDC** 

**Benchmark**: Full assessment against astrophysical and laboratory spectra of line identifications and diagnostics (densities, temperatures from line ratios) in the XUV

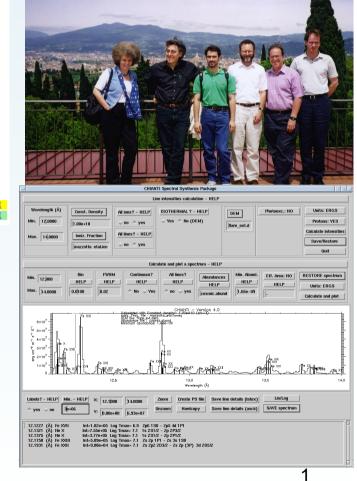





G. Del Zanna - VAMDC meeting OU 2010



### **CHIANTI atomic package**




CHIANTI Provides all atomic data and IDL programs necessary for modelling spectra from collisionally-ionised plasmas for the XUV. Over 1000 citations. User base: solar physics, astrophysics, X-ray, EUV, UV



V.6 released (Dere et al.2009) contains **new atomic** data and new ionization and recombination rates

Basic atomic data from e.g. CHIANTI are included in many other spectral codes. Photoionization (XSTAR, CLOUDY, MOCASSIN) and others (ATOMDB, XSPEC, ISIS, PINTofALE).



### **CHIANTI** data (ascii)



| fe_12.elvlc                         | Energy levels (theoretical, observed), LSJ fro Fe XII (Fe <sup>11+</sup> )                                                                                              |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fe_12.wgfa                          | Transition probabilities, gf values, theoretical, observed wavelengths                                                                                                  |
| fe_12.splups                        | spline fits to Maxwellian-averaged e <sup>-</sup> collision strengths. Only excitaton from ground+ kept. >90% of data are lost. Data from IP, APAP-Network, literature. |
| fe_12.psplus                        | Same but for protons.                                                                                                                                                   |
| .diparams<br>.drparams<br>.rrparams | DI, DR, RR total rates                                                                                                                                                  |

- CHIANTI data and programs are distributed via
  - + a tar file (www)
  - + SolarSoft (IDL packages for Solar Physics).
  - + (testing phase) Python interface (www)
- CHIANTI emissivities are currently calculated for plasmas in ionization equilibrium. Have photo-excitation but not photo-ionization.
  - G. Del Zanna VAMDC meeting OU 2010

### **Calculations of basic atomic data**

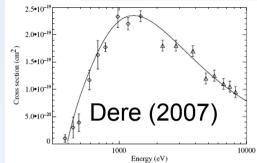


#### 1) Direct-ionization by electron impact:

Dere (2007) calculated ab-initio cross-sections of impact with ions and compared them with available experimental data for a large number of ions.

2) Radiative recombination: Badnell (2006).

3) **Dielectronic recombination**: Badnell et al. (2003), a number of papers.


4) R-matrix electron impact excitation:

Iron Project
 STFC-funded (UK)
 APAP Network <u>http://www.apap-network.org/</u>

atomic structure and e- scattering data for all astrophysically-important ions, sequence by sequence.

F-like ions: Witthoeft Whiteford Badnell (2007) Na-like ions: Liang, Whiteford, Badnell (2009) Ne-like ions: Liang et al. (2010, submitted) Other calculations

G. Del Zanna - VAMDC meeting OU 2010



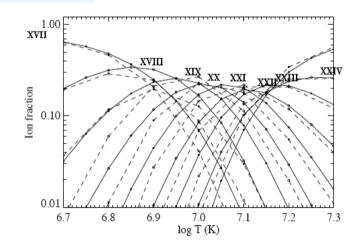
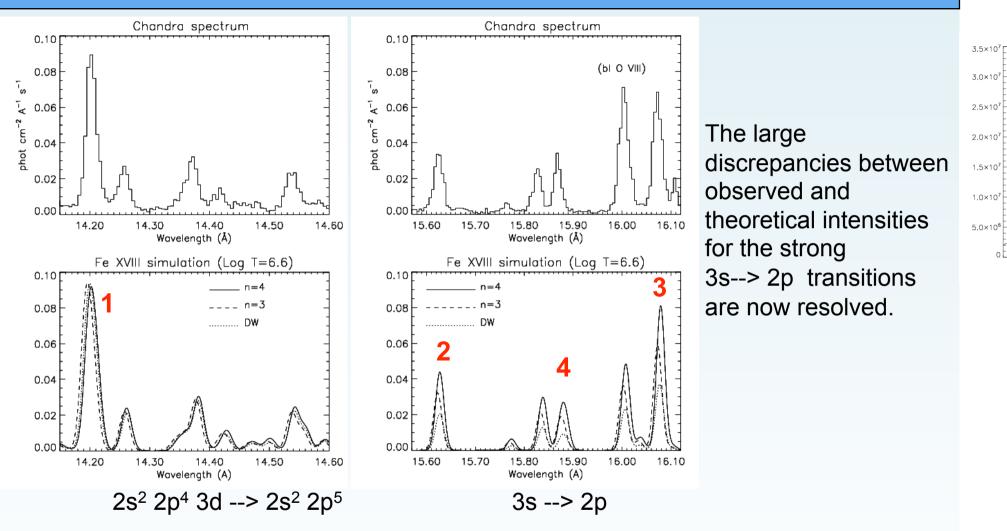



Fig. 3. Ionization equilibria for Fe XVII-XXIV. Full line - current calculations, dashed line = Mazzotta et al. (1998).






• In optically-thin plasmas, line intensities are proportional to (e.g. Fe XII):

$$\varepsilon_{ij} = N_j A_{ji} = \frac{N_j}{N(\text{Fe XII})} \frac{N(\text{Fe XII})}{N(\text{Fe})} \frac{N(\text{Fe})}{N(\text{H})} \frac{N(\text{H})}{N_e} N_e A_{ji}$$

- Obtain densities, temperatures and elemental abundances from spectra (and broad-band data).
- Create synthetic spectra to be compared to observed ones (requires links to instrument properties)
- Create synthetic broad-band images (X-ray, EUV)
- Calculate instrument response functions
- Calculate radiative losses

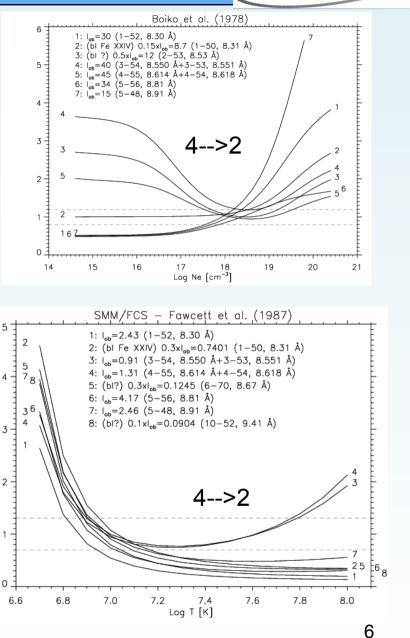
$$E_R \sim N^2 \times \sum_Y Ab(Y) \times \sum_{i=1}^{Z+1} Y_i \varepsilon_i$$

#### Atomic data do make a difference! Fe XVIII



First R-matrix e- scattering calculation by Witthoeft, Badnell, Del Zanna et al. (2006). Now available with CHIANTI v.6

5


15.6

#### Fe XXIII: Ne, Te

 $F_{ji}(N_{\rm e},T_{\rm e}) = C \ \frac{I_{\rm ob}N_{\rm e}}{N_j(N_{\rm e},T_{\rm e}) A_{ji}}$ 

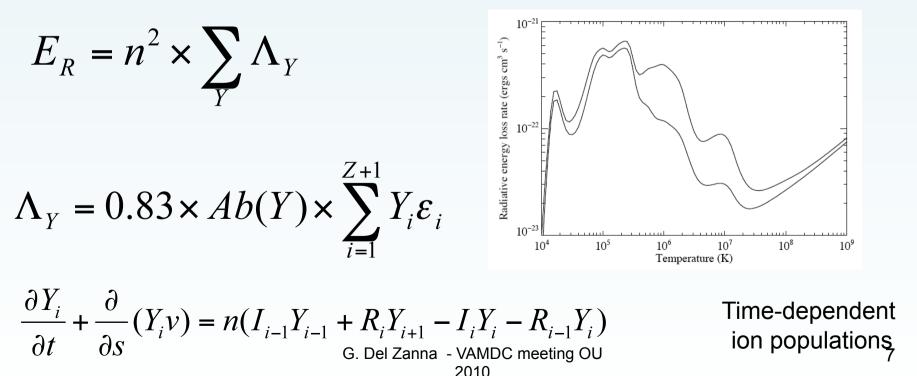
New electron impact excitation by Chidichimo et al. (2005).

Del Zanna et al. (2005): New diagnostics to measure electron temperatures and densities.





#### **Radiative lossess**




$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial s} \left[ (E+P)v \right] = \rho v g_{\parallel} + \frac{\partial}{\partial s} \left( \kappa T^{\frac{5}{2}} \frac{\partial T}{\partial s} \right) + E_H(s,t) - E_R(s,t)$$

$$E = \frac{1}{2} \rho v^2 + \frac{P}{\gamma - 1}$$
Hydrodynamic modelling
HYDRAD: Bradshaw & Mason (2003)

# Radiative lossess in tabulated form are needed by modellers

# Latest (v6) CHIANTI radiative losses (coronal/photospheric abundances)



## CHIANTI & Astrogrid (VO) - 2006



CHIANTI data were imported into a MySQL database.
 (Silvia Dalla & Kevin Benson).

Tables: SpectralLines and LineEmissivities. Link to the VO:

- using ESAC DAL Toolkit to install a SLAP server (DMMapper can translate from CHIANTI data model to Line data model)
   Data appear automatically in VOSpec, once registered. -
- 2. by means of AstroGrid: www2.astrogrid.org DSA software: user can build ADQL queries on the CHIANTI tables via Workbench.

## **Spectral Lines table**



#### <u>Result</u> of query to spectral lines table via AstroGrid DSA:

| 1 18<br>2 1<br>3 20<br>4 19          | rser for 1<br>E_NU C<br>83728<br>17160<br>201205<br>91364<br>97329<br>16620         | votable     HEMICI(     26     26     26     26     26     26     26     26 | DNISAT<br>14<br>22<br>8<br>11<br>9 | TITLE<br>Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A | FINAL_L<br>154<br>15 | 267  | TRANSI | WAVELENGTH_METE |            |            |            | FINAL   |
|--------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|----------------------|------|--------|-----------------|------------|------------|------------|---------|
| LINE<br>1 18<br>2 11<br>3 20<br>4 19 | <b>vser for 1</b><br>IE_NU C<br>83728<br>17160<br>201205<br>91364<br>97329<br>16620 | : votable<br>:HEMICIC<br>26<br>26<br>26<br>26<br>26<br>26                   | 14<br>22<br>8<br>11                | Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A          | 154<br>15            | 267  |        |                 |            |            |            | FINAL   |
| LINE<br>1 18<br>2 11<br>3 20<br>4 19 | <b>vser for 1</b><br>IE_NU C<br>83728<br>17160<br>201205<br>91364<br>97329<br>16620 | : votable<br>:HEMICIC<br>26<br>26<br>26<br>26<br>26<br>26                   | 14<br>22<br>8<br>11                | Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A          | 154<br>15            | 267  |        |                 |            |            |            | FINAL   |
| LINE<br>1 18<br>2 11<br>3 20<br>4 19 | <b>vser for 1</b><br>IE_NU C<br>83728<br>17160<br>201205<br>91364<br>97329<br>16620 | : votable<br>:HEMICIC<br>26<br>26<br>26<br>26<br>26<br>26                   | 14<br>22<br>8<br>11                | Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A          | 154<br>15            | 267  |        |                 |            |            |            | FINAL   |
| LINE<br>1 18<br>2 11<br>3 20<br>4 19 | E_NU C<br>.83728<br>17160<br>201205<br>.91364<br>.97329<br>16620                    | HEMIC (0<br>26<br>26<br>26<br>26<br>26<br>26                                | 14<br>22<br>8<br>11                | Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A          | 154<br>15            | 267  |        |                 |            |            |            | FINAL   |
| 1 18<br>2 1<br>3 20<br>4 19          | .83728<br>17160<br>201205<br>.91364<br>.97329<br>16620                              | 26<br>26<br>26<br>26<br>26<br>26                                            | 14<br>22<br>8<br>11                | Fe XV 180.0108 A<br>Fe XXIII 180.0180 A<br>Fe IX 180.0318 A          | 154<br>15            | 267  |        |                 |            |            |            | FINAL   |
| 2 1<br>3 20<br>4 19                  | 17160<br>201205<br>91364<br>97329<br>16620                                          | 26<br>26<br>26<br>26                                                        | 22<br>8<br>11                      | Fe XXIII 180.0180 A<br>Fe IX 180.0318 A                              | 15                   |      |        |                 |            |            |            |         |
| 3 20<br>4 19                         | 201205<br>91364<br>97329<br>16620                                                   | 26<br>26<br>26                                                              | 8                                  | Fe IX 180.0318 A                                                     |                      |      |        | 1.80011E-8      | 1.80011E-8 | 0.5414     | 1.59200E10 | 3d 4 🔺  |
| 4 19                                 | .91364<br>.97329<br>16620                                                           | 26<br>26                                                                    | 11                                 |                                                                      | 11                   | 36   | 1      | 1.80018E-8      | 1.81598E-8 | 0.         | 727.3      | 2 s 3 💻 |
|                                      | .97329<br>16620                                                                     | 26                                                                          |                                    |                                                                      |                      | 106  | 2      | 1.80032E-8      | 1.80032E-8 | 1.935      | 5.68600E10 | 3s2     |
| 5 10                                 | 16620                                                                               |                                                                             | 0                                  | Fe XII 180.0329 A                                                    | 10                   | 105  | 2      | 1.80033E-8      | 1.80033E-8 | 0.000879   | 2.79900E7  | 3s 3    |
|                                      |                                                                                     |                                                                             |                                    | Fe X 180.0382 A                                                      | 35                   | 84   | 2      | 1.80038E-8      | 1.80038E-8 | 0.289      | 8.60800E9  | 3s 3    |
|                                      |                                                                                     | 26                                                                          | 22                                 | Fe XXIII 180.0400 A                                                  | 4                    | 7.   | 1      | 1.80040E-8      | 1.80481E-8 | 0.06407    | 4.39500E9  | 25.2    |
|                                      | .68282                                                                              | 26                                                                          | 17                                 | Fe XVIII 180.0506 A                                                  | 196                  | 238  | 2      | 1.80051E-8      | 1.80051E-8 | 0.001184   | 6.09200E7  | 252     |
| 8 4                                  | 48765                                                                               | 26                                                                          | 21                                 | Fe XXII 180.0554 A                                                   | 154                  | 212  | 2      | 1.80055E-8      | 1.80055E-8 | 0.04897    | 5.03800E9  | 25.2    |
| 9 18                                 | .86344                                                                              | 28                                                                          | 14                                 | Ni XV 180.0558 A                                                     | 3                    | 23   | 1      | 1.80056E-8      | 1.75817E-8 | 0.2433     | 1.66900E10 | 3s2     |
| 10                                   | 1147                                                                                | 15                                                                          | 14                                 | PXV 180.0569 A                                                       | 14                   | 19   | 1      | 1.80057E-8      | 1.80008E-8 | 0.1671     | 8.58900E9  | 4d      |
| 11 18                                | .83746                                                                              | 26                                                                          | 14                                 | Fe XV 180.0604 A                                                     | 155                  | 268  | 2      | 1.80060E-8      | 1.80060E-8 | 3.244      | 7.41500E10 | 3d 4    |
| 12 18                                | .83857                                                                              | 26                                                                          | 14                                 | Fe XV 180.0623 A                                                     | 161                  | 281  | 2      | 1.80062E-8      | 1.80062E-8 | 0.008523   | 3.50700E8  | 3p 5    |
| 13 11                                | .16151                                                                              | 26                                                                          | 19                                 | Fe XX 180.0665 A                                                     | 355                  | 473  | 2      | 1.80067E-8      | 1.80067E-8 | 0.007767   | 7.98900E8  | 252     |
| 14 11                                | .18329                                                                              | 26                                                                          | 19                                 | Fe XX 180.0710 A                                                     | 627                  | 703  | 2      | 1.80071E-8      | 1.80071E-8 | 0.03371    | 1.15600E9  | 25.2    |
| 15 18                                | 83696                                                                               | 26                                                                          | 14                                 | Fe XV 180.0710 A                                                     | 152                  | 253  | 2      | 1.80071E-8      | 1.80071E-8 | 0.1018     | 1.90400E9  | 3d 4    |
| 16 18                                | .87740                                                                              | 26                                                                          | 11                                 | Fe XII 180.0783 A                                                    | 5                    | 47   | 2      | 1.80078E-8      | 1.80078E-8 | 0.         | 9248.      | 3s2     |
| 17 19                                | .94770                                                                              | 26                                                                          | 11                                 | Fe XII 180.0926 A                                                    | 22                   | 140  | 2      | 1.80093E-8      | 1.80093E-8 | 0.5435     | 1.75700E10 | 3s2     |
| 18 20                                | 200097                                                                              | 26                                                                          | 9                                  | Fe X 180.0928 A                                                      | 86                   | 168  | 2      | 1.80093E-8      | 1.80093E-8 | 0.00157    | 1.59000E8  | 3s2     |
| 19 20                                | 200139                                                                              | 26                                                                          | 9                                  | Fe X 180.0928 A                                                      | 86                   | 169  | 2      | 1.80093E-8      | 1.80093E-8 | 0.001221   | 6.18200E7  | 352     |
| 20 19                                | .95445                                                                              | 28                                                                          | 12                                 | Ni XIII 180.0948 A                                                   | 2                    | 34   | 2      | 1.80095E-8      | 1.80095E-8 | 0.03633    | 1.49400E9  | 3s2     |
| 21 2                                 | 27975                                                                               | 10                                                                          | 5                                  | Ne VI 180.0997 A                                                     | 12                   | 40   | 1      | 1.80100E-8      | 1.80043E-8 | 3.67800E-6 | 3.78000E5  | 2p3     |
|                                      | .83745                                                                              | 26                                                                          | 14                                 | Fe XV 180.1148 A                                                     | 155                  | 267  | 2      | 1.80115E-8      | 1.80115E-8 | 0.02654    | 7.79600E8  | 3d 4    |
| 23 16                                | .69495                                                                              | 18                                                                          | 8                                  | Ar IX 180.1250 A                                                     | 15                   | 55   | 1      | 1.80125E-8      | 1.75766E-8 | 0.02555    | 1.75000E9  | 252     |
| 24 11                                | 17906                                                                               | 26                                                                          | 19                                 | Fe XX 180.1342 A                                                     | 554                  | 654  | 2      | 1.80134E-8      | 1.80134E-8 | 0.00568    | 1.94600E8  | 252     |
| 25 11                                | 17916                                                                               | 26                                                                          | 19                                 | Fe XX 180.1339 A                                                     | 556                  | 657. | 2      | 1.80134E-8      | 1.80134E-8 | 0.0435     | 2.23500E9  | 25.2    |
|                                      | 56793                                                                               | 16                                                                          | 10                                 | 5 XI 180.1361 A                                                      | 45                   | 49   | 2      | 1.80136E-8      | 1.80136E-8 | 0.         | 42.        | 252     |
|                                      | .80762                                                                              | 26                                                                          | 14                                 | Fe XV 180.1361 A                                                     | 42                   | 107  | 2      | 1.80136E-8      | 1.80136E-8 | 0.00119    | 2.44600E8  | 35.4    |
|                                      | 201196                                                                              | 26                                                                          | 8                                  | Fe IX 180.1386 A                                                     | 11                   | 105  | 2      | 1.80139E-8      | 1.80139E-8 | 0.08465    | 3.47800E9  | 352     |
|                                      | 18115                                                                               | 26                                                                          | 19                                 | Fe XX 180.1445 A                                                     | 586                  | 674  | 2      | 1.80144E-8      | 1.80144E-8 | 0.4235     | 7.25400E9  | 25.2    |
|                                      | .18114                                                                              | 26                                                                          | 19                                 | Fe XX 180.1480 A                                                     | 586                  | 673  | 2      | 1.80148E-8      | 1.80148E-8 | 0.01876    | 4.81900E8  | 25.2    |
|                                      | 75807                                                                               | 26                                                                          | 20                                 | Fe XXI 180.1489 A                                                    | 415                  | 539  | 2      | 1.80149E-8      | 1.80149E-8 | 0.01088    | 4.47100E8  | 252     |
|                                      | .81504                                                                              | 26                                                                          | 14                                 | Fe XV 180.1486 A                                                     | 64                   | 170  | 2      | 1.80149E-8      | 1.80149E-8 | 0.004342   | 1.78500E8  | 3p 4    |
|                                      | 86746                                                                               | 20                                                                          | 13                                 | Ca XIV 180 1600 A                                                    | 11                   | 15   | 1      | 1 80160E_8      | 1 76078F_8 | 0.000137   | 1 /1200E7  | 202     |
| •                                    |                                                                                     |                                                                             |                                    |                                                                      |                      |      |        |                 |            |            | •          |         |

# CHIANTI atomic data for VAMDC



- WP4 SA1 Giulio Del Zanna & Helen Mason (DAMTP, Univ. of Cambridge)
- Collaboration with IoA (Nic Walton, Guy Rixon)
  - MSSL, UCL (Len Culhane, Kevin Benson, Peter Kuen)
- BASIC DATA: first table: wavelength, A-value, gf-value, configuration, LSJ, observed, theoretical energy of upper and lower levels.
   To do: add other basic atomic data (rates).
   Maintain identity of each database.
   Problem of multiple calculations. CHIANTI policy is to select one.
   Problem of upgrades (main once every 1-2 years)
   Essential to provide appropriate references to original calculation in the literature ! Not simple to transfer info.
- DERIVED DATA (modelling): second table: line emissivities in a grid of temperatures and densities.
- To do: write simple scripts to call CHIANTI routines via the MSSL server (IDL and CHIANTI installed). Alternatively, write Python programs.

See Kevin Benson's talk on wednesday

### **User base**



- 1) Modellers, e.g. CLOUDY, XSTAR. Make ingestion of basic atomic data easier
- 2) General users that do not have IDL licence. Make the basic programs available via the www/ Python.
- 3) General users that are not bothered to install CHIANTI.
- 4) General users that want some derived products that are not readily available. Example: many users need CHIANTI radiative losses

- AHEAD EU proposal for next generation X-ray astrophysics. Emphasis is on spectroscopy and need for atomic data links to VAMDC
- GDZ publicised VAMDC at the X-ray 2010 workshop (Utrecht)

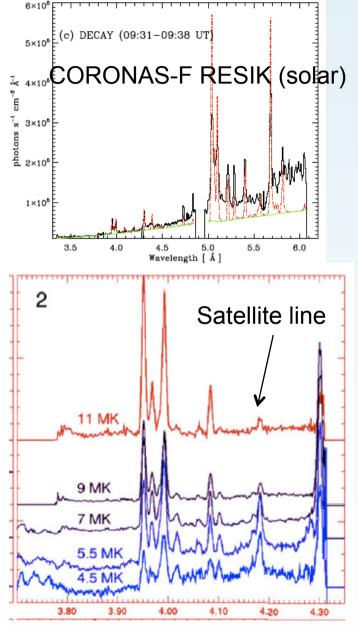


#### **Benchmarking atomic data**

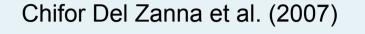
In a series of papers, I have calculated and benchmarked atomic data for the XUV using a `novel' approach: atomic structure calculations and comparisons between

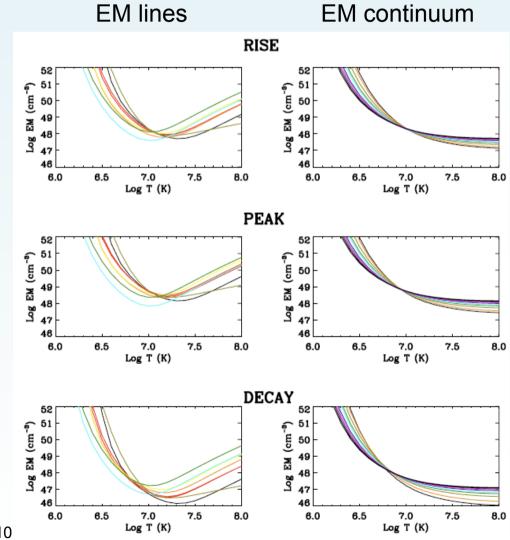
> observed and theoretical wavelengths

 $\succ$  observed and theoretical line intensities for a wide range of astrophysical and laboratory plasmas using the emissivity ratios:


$$F_{ji}(N_{\rm e}, T_{\rm e}) = C \quad \frac{I_{\rm ob}N_{\rm e}}{N_j(N_{\rm e}, T_{\rm e}) A_{ji}}$$

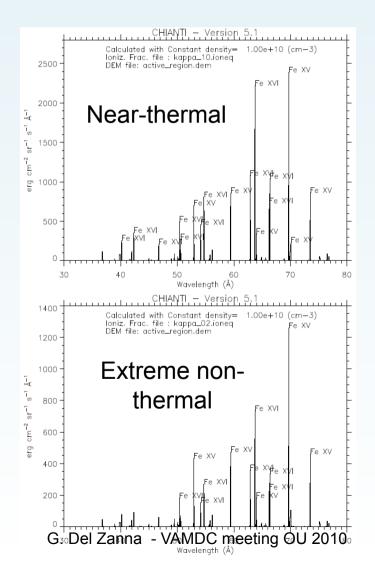
Ifetimes (beam-foil spectroscopy)


A large number of revised wavelengths, new identifications and new diagnostic applications.


For many ions NIST energies are not up-to-date. Not easy to trace original work.

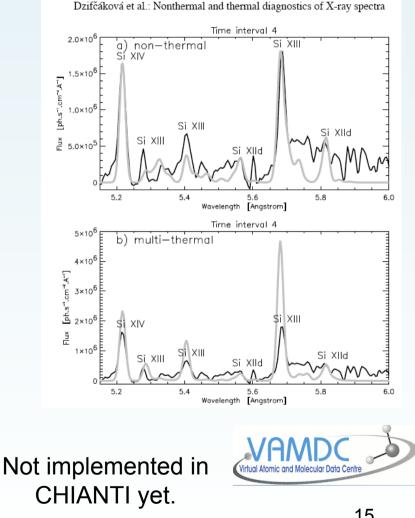
### Te from satellites and EM approach




Sylvester: et ann (2006) DC meeting OU 2010






### **Non-thermal electron distributions**

Calculate level population and ion abundances with non-Maxwellian e<sup>-</sup> distributions (Dzifcakova & Mason 2008)



#### CORONAS-F RESIK SPECTRA

#### Dzifcakova et al. (2008)

